U-2 Dragon Lady

U-2 Dragon Lady

U-2 Dragon Lady is a single-jet engine, high-altitude reconnaissance aircraft developed by Lockheed Martin for the US Air Force.

The aircraft first flew in 1955 and provides continuous surveillance day and night and in all weather conditions. The aircraft is capable of gathering surveillance and signals intelligence data in real-time and can be deployed anywhere in the world.

The U-2 spy plane, known as the Dragon Lady, can loiter at 70,000ft (21,336m) over the area of operations for several hours and is often described as a glider due to its flight characteristics.

The design has remained essentially unchanged over decades of operational deployment but the reconnaissance systems are constantly upgraded with state-of-the-art and classified systems.

The last U-2 was delivered in 1989 and there are 32 U-2S aircraft in the US Air Force fleet.

The aircraft was used in Operations Desert Storm and Desert Shield during the Gulf Crisis during 1990 and 1991, over Bosnia and Kosovo in support of Nato forces during the 1990s, in Afghanistan in 2001, and in support of Operation Iraqi Freedom in 2003.

In July 2015, Lockheed Martin completed the sixth flight test of the U-2 integrated with open mission systems (OMS) payloads in support of the USAF’s OMS vision.

Upgrades

The USAF’s entire U-2 reconnaissance aircraft fleet was installed with the senior year electro-optical reconnaissance system (SYERS) sensor SYERS-2C supplied by Collins Aerospace. Completed in February 2020, the sensor upgrades provide the aircraft with enhanced optical performance and accurate long-range tracking to enable improved detection of threats.

In April 2020, the US Air Force awarded a $50m contract to Lockheed Martin to advance the capabilities of the U-2 aircraft to meet the requirements of the future battlespace. The U-2 spy plane will be equipped with a modernised avionics suite, an upgraded cockpit, and an OMS standard-compliant mission computer.

U-2 spy plane design

Removable outrigger gear located away from the fuselage centreline is used to lighten the weight of the airborne aircraft. The outrigger gear, or pogos, are attached with pins, which are removed when the aircraft is on the runway and preparing for take-off. The pogos drop onto the runway as the aircraft lifts and the ground maintenance crew retrieve them immediately after take-off.

Unique to the U-2 aircraft is that the main wing planks are milled from large single billets of metal, rather than built up of riveted sheet metal, I-beams and U-channels. The wings are fitted with titanium skidplates so that when the aircraft lands and is brought to a halt, the wing can gently touch the ground.

The ground crew then refit the pogos so the aircraft can taxi back to the hangar. Each wing has a single aileron surface on the trailing edge to control roll and two flaps to control lift and drag.

U-2 aircraft pilot systems and cockpit

The reconnaissance aircraft is flown by a single pilot, supported by a ground crew led by a fellow pilot known as the mobile officer. The pilot wears a pressure suit and uses the onboard liquid oxygen system for breathing at high altitudes.

A cockpit modernisation programme called RAMP (Reconnaissance Avionics Maintainability Program) was completed in 2007, with the first upgraded U-2S aircraft delivered in April 2002.

The new cockpit of the U-2 spy plane includes a new digital main avionics processor, three 6in x 8in multifunction displays, an up-front control and display unit and an independent secondary flight display system, which serve to reduce pilot workload and improve situational awareness. BAE Systems AN/ALQ-221 advanced defensive system, which consists of a radar warning receiver and Electronic Countermeasures (ECM) system, is also included in the upgrade.

U-2 surveillance payloads and ASARS-2 radar

Aircraft payloads can be configured with a range of sensors to meet the signals and surveillance intelligence requirements of the mission. These include: electro-optic sensors including CCD cameras; ASARS-2 SAR radar; a signals intelligence suite known as Senior Glass, which includes Senior Spear Comint and Senior Ruby Elint systems; and data uplink systems Senior Span and Senior Spur.

The U-2 aircraft, equipped with an ASARS-2 radar, can be identified by the longer nose cone, with two fairing bulges on the top centreline surface in front of the cockpit. The Raytheon ASARS 2 Advanced Synthetic Aperture Radar System is a high resolution day and night all weather side-looking airborne radar (SLAR) for use at high altitude.

The radar has two V-shaped planar arrays with electronically scanned antennas. The radar scans the ground on each side of the aircraft as the aircraft flies over the area of operations. The radar can take pictures of the battlefield to a range of 162km.

ASARS 2 can operate in search and spot modes against moving and stationary targets. In moving target indicator mode, the view of moving targets is presented against a SAR background or a cartographic background. Operation in spot mode against stationary targets provides a higher degree of detail and finer target discrimination. A recorder for the ASARS-2 is installed in the equipment bay forward of the main landing gear well. Data from the ASARS 2 is downloaded via a real-time wideband data link to the TR-1 ground station, TRIGS-1, supplied by Lockheed Martin.

An upgraded Raytheon ASARS-2A radar has been developed which has an increase in coverage, more capable spot mode and enhanced ground moving target indicator, with a new onboard processor. The first ASARS-2A was delivered in August 2001.

Superpods are mounted on the wings at the hardpoints about 10ft from the fuselage. The pods house signals intelligence sensors and systems. The equipment bays E-bay and Q-bay just forward of the main landing gear contain electronics systems and sensor equipment. Satellite communications links are installed in a dorsal pod.

Northrop Grumman developed a new Airborne Signals Intelligence Payload (ASIP) for the USAF U-2 and Global Hawk UAV. Flight testing of the ASIP began on the U-2 in December 2007 and entered service on the U-2 in 2008.

U-2 spy plane engines

All U-2 aircraft have been upgraded to U-2S standard and fitted with the General Electric F118-GE-101 engine, which is lighter and smaller than the previously fitted Pratt and Whitney J75-P-13 non-afterburning turbojet engine. The Dragon Lady has an initial climb rate of 15,000ft/min to around 25,000ft and then uses a lower climb rate to achieve an altitude of 70,000ft. A typical reconnaissance mission might take six and a half hours and the aircraft’s range is over 3,000 miles.

NASA ER-2 scientific research aircraft

The scientific research aircraft derivative of the U-2 is the ER-2 developed by Lockheed Martin for the National Aeronautics and Space Administration (NASA). The ER-2 is a high altitude research aircraft used to carry experiments and sensors. ER-2s can carry airborne scientific payloads of up to 2,600lbs to investigate such matters as earth resources, celestial phenomena, atmospheric chemistry and dynamics and oceanic processes.

Variants

Primary list

  • U-2A: Initial production, single-seat; Pratt & Whitney J57-P-37A engine; 48 built
  • U-2B: Proposed missile warning patrol aircraft; not built.
  • U-2C: Enhanced single-seat model with Pratt & Whitney J75-P-13 engine and modified engine intakes
  • U-2D: 2 seat used for various IR detection programs, not a trainer aircraft.
  • U-2CT: Enhanced two-seat trainer.
  • U-2E: Aerial refueling capable, J57-powered.
  • U-2F: Aerial refueling capable, J75-powered.
  • U-2G: A-models modified with reinforced landing gear, added arresting hook, and lift dump spoilers on the wings for U.S. Navy carrier operations; three converted.
  • U-2H: Aircraft carrier capable, aerial refueling capable.
  • U-2R: Re-designed airframes enlarged nearly 30 percent with underwing pods and increased fuel capacity; 14 built.
  • U-2RT: Enhanced two-seat R-model trainer; one built
  • U-2EPX: Proposed U.S. Navy maritime surveillance R-model; two built.
  • TR-1A: A third production batch of U-2R aircraft built for high-altitude tactical reconnaissance missions with side-looking radar, new avionics, and improved ECM equipment; 33 built. Re-designated U-2S after the fall of the Soviet Union.
  • TR-1B: Two TR-1A airframes completed as two-seat conversion trainers.
  • TU-2S: New redesignated TR-1B two-seat trainer with improved engine; five converted.
  • ER-2: Two TR-1A airframes, AF Ser. No. 80-1063, and Ser. No. 80-1097, modified as Earth resources research aircraft, moved from USAF to NASA and operated by the NASA High-Altitude Missions Branch, Ames Research Center. NASA flies Ser. No. 80-1097 as N809NA and Ser. No. 80-1063 as N806NA.
  • U-2S: Redesignation of the TR-1A and U-2R aircraft with updated General Electric F118 engine, improved sensors, and addition of a GPS receiver; 31 converted.
  • WU-2: Atmospheric/weather research WU-model.

U-2E/F/H details

In May 1961, in an attempt to extend the U-2’s already considerable range, Lockheed modified six CIA U-2s and several USAF U-2s with aerial refueling equipment, which allowed the aircraft to receive fuel from either the KC-97 or from the KC-135. This extended the aircraft’s range from approximately 4,000 to 8,000 nautical miles (7,400 to 15,000 km) and extended its endurance to more than 14 hours. The J57-powered U-2Bs were re-designated U-2E and the J75-powered U-2Cs were redesignated U-2F. Each modified U-2 also included an additional oxygen cylinder. However, pilot fatigue was not considered, and little use was made of the refueling capability. The only U-2H was both air refueling-capable and carrier-capable.

U-2R/S details

The U-2R, first flown in 1967, is significantly larger and more capable than the original aircraft. A tactical reconnaissance version, the TR-1A, first flew in August 1981. A distinguishing feature of these aircraft is the addition of a large instrumentation “superpod” under each wing. Designed for standoff tactical reconnaissance in Europe, the TR-1A was structurally identical to the U-2R. The 17th Reconnaissance Wing, RAF Alconbury, England used operational TR-1As from 1983 until 1991. The last U-2 and TR-1 aircraft were delivered to USAF in October 1989. In 1992 all TR-1s were re-designated to U-2R for uniformity across the fleet. The two-seat trainer variant of the TR-1, the TR-1B, was redesignated as the TU-2R. After upgrading with the GE F-118-101 engine, the former U-2Rs were designated the U-2S Senior Year.

ER-2 details

A derivative of the U-2 known as the ER-2 (Earth Resources 2), in NASA’s white livery, is based at the Dryden Flight Research Center (now Armstrong Flight Research Center) and is used for high-altitude civilian research including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. Programs using the aircraft include the Airborne Science Program, ERAST and Earth Science Enterprise. Landings are assisted by another pilot at speeds exceeding 120 miles per hour (190 km/h) in a chase car.

Specifications

Crew 1
Payload 5,000 lb (2,300 kg) payload
Length 63 ft 0 in (19.20 m)
Wingspan 103 ft (31 m)
Heigh 16 ft 0 in (4.88 m)
Wing area 1,000 sq ft (93 m2)
Empty weight 16,000 lb (7,257 kg)
Gross weight  
Max take off weight 40,000 lb (18,144 kg)
Power plant (Dry thrust) 1 × General Electric F118-101 turbofan engine, 17,000 lbf (76 kN) thrust
Power plant (Thrust with afterburner)   
Maximum speed (Sea level)  
Maximum speed (High altitude) Mach 0.715 (412 kn; 470 mph; 760 km/h) at 72,000 ft (22,000 m)
Combat radius  
Ferry range 6,090 nmi (7,010 mi, 11,280 km) plus
Service ceiling 80,000 ft (24,000 m) plus
Rate of climb 9,000 ft/min (46 m/s)
Wing loading 40 lb/sq ft (200 kg/m2)
Thrust/weight 0.425
Design load factor  

Operators

Related Armament

Leave a Reply

Your email address will not be published.